Asia Noise News Building Accoustics Building Acoustics Environment Home Industrial Noise and Vibration Product News Noise-th Uncategorized Vibration Virtual Data Room


What should an architectural acoustic consulting firm do? This question is very commonly asked when an acoustician is asked to submit a work proposal for a project. In this article, we will describe the scope of work of an acoustic consultant with reference to the type of mixed-use high-end building project. Because in this type of project an architectural acoustic consultant is required to be able to describe all the scope of work in one project with high complexity.

Details of the scope of work of acoustic consultants in mixed-use high-end building projects are as follows:

1. Criteria Formulation
At the beginning of the project, the acoustic consultant must recommend design criteria/targets for various rooms and areas within the building such as retail, apartment units both for bedrooms and living rooms, and commercial areas such as meeting rooms, multifunction rooms, spas, fitness, restaurants. , club lounges, etc. These criteria are determined based on studies and summaries of the applicable standards in the country, international standards, client recommendations, and the building operator concerned.

2. Schematic
With so many rooms that fall into the scope of work of an acoustic consultant with this type of project, it is highly recommended that an acoustician provide schematic designs for several important rooms for the attention of other consultants in the early stages of the project. Examples are MEP rooms, building structure connections, placement of HVAC equipment above the ceiling, and draft wall partition configurations.

3. Noise Review from the Environment Around the Building
The acoustic consultant must review potential sources of noise from aircraft, train stations, transportation on highways, outdoor MEP equipment, and all things around the building that have the potential to interfere with audial comfort to the interior of the building to ensure the targeted acoustic criteria are achieved. At this stage the acoustician must be able to convey the results of modeling and simulations for several points around the building in the form of drawings that can be understood by clients and other consultants. At this stage, a building fa konfigurasiade configuration can be recommended that takes into account the noise from the area around the building.

4. Noise HVAC (duct-borne)
Discussion and review of noise from all HVAC be it from air handling unit (AHU), axial and centrifugal fans, fan coil unit (FCU), etc. The ducting system will be analyzed to determine the noise level in the critical room from the nearest diffuser ducting system outlet. From this analysis, the need for silencers, lagging or duct linings will be recommended in order to achieve the acoustic criteria that have been determined. The analysis will be carried out on all HVAC systems without exception, with the greatest attention being on residential areas, spas, hotels, etc.

5. Sound Propagation in Building Structures (Structure-Borne)
All matters relating to the propagation or vibration of sound via the building structure, whether it is due to human footsteps on the top floor or vibrations from the installation of MEP machines above the ceiling or floor. The acoustic consultant must be able to evaluate according to the natural frequency of the building structure and provide recommendations on floor slab elements to meet operator and client standards applied.

6. Machine Vibration Control
The acoustic consultant should conduct an in-depth discussion on the vibration isolator for the installed machines. This is done by taking into account the deflection of the floor slab and its relationship to the static and dynamic loads of the machine (eg chiller, pump, cooling tower, AHU, etc.). In addition, ensuring the insulator is efficient to withstand vibrations to the building structure.

7. Room Insulation
Discussion on the isolation of certain rooms by providing technical calculations both with the “indoor room” and “floating floor” methods so that sound and vibration do not propagate to all elements of the building, especially the room around the isolated area.

8. Acoustic Interior
Reviewing and calculating room acoustic parameters on interior design elements of commercial spaces such as ballrooms, meeting rooms, and other areas where the clarity of speech or music is crucial.

9. Detailed Drawing
The acoustic consultant must provide or recommend specifications for building skin elements such as faades, walls and floor slabs in CAD format on a cut or plan basis. This will make it easier for relevant consultants to apply these specifications in their construction drawings.

10. Noise Isolation Due to Impact
Collisions in the fitness area, whether it’s due to aerobic activity or lifting weights, are a special concern for acoustic consultants. In addition to different forms of acoustic treatment, the time span of these activities must also be included in detailed technical calculations, and of course measurable.

11. Review of Related Consultant Drawings
After all acoustic treatments have been adapted to construction drawings by the relevant consultant, the acoustician must review all these drawings to ensure that all treatments have been described correctly, before entering the tender phase.

12. Coordination with Selected Contractors
The acoustic consultant must allocate time to coordinate the design and answer questions from the selected contractor and sign all forms related to material approval if it is in accordance with the acoustic intentions.

13. Final assessment
Before handing over the project to the next party, the acoustic consultant must conduct a final assessment of the building elements designed by the consultant. Next, compare the measured value to the design target and pre-determined criteria.

by Ramadhan Akmal Putra 

Asia Noise News Building Accoustics Building Acoustics Environment Home Industrial Noise and Vibration Product News Noise-th Uncategorized Vibration Virtual Data Room

Accelerometer mounting

One of the challenges in measuring vibration using accelerometer is how to mount the accelerometer on the surface of the object that is being measured. Choosing the proper mounting can affect both to the measurement results and practicality when we are conducting the measurement.


Accelerometer mounting affects the measurement results because it can shift the resonance frequency of the accelerometer. Accelerometers have a significant amplification factor at its resonance frequency. This implies that in conducting measurements using accelerometer, it is important to choose mounting techniques that does not shift the resonance frequency into our frequency of interest.


Generally, there are four ways to mount accelerometer which are:

  1. Stud mounting: this technique is done by bolting the accelerometer into the object. This option is often considered as the mounting technique that produces the best measurement result compared to other options. Stud mounting has a high resonance frequency that in most cases a lot higher than our frequency of interest. To increase the performance of stud mounting, coupling fluid such as oil, petroleum jelly or beeswax can be used.

The downside of this technique is that not all object has a possible location to be bolted at the surface. If this is the case, then we will need to modify the surface and might leave a hole on the object.

  1. Adhesive: there are few adhesives that are commonly used to mount accelerometers such as epoxy (usually chosen for permanent mounting), wax, glue, and double-sided tape. Use of adhesive has lower resonance frequency compared to stud mounting, but in majority of cases still high enough that it does not affect the measurement at the frequency of interest. Of course, this depends on the type of adhesive that is being used as well.

Usage of adhesive however, especially for temporary mounting, has its own problem which is it can leave stain on the surface of the object that we are measuring, as well as on the accelerometer itself.

Another option of mounting related with adhesive is to use adhesive mounting pad, which is a pad that can be mounted on the surface that we want to measure using adhesive, and then we can mount the accelerometer on the pad. This will allow us to move one accelerometer to few locations more easily. From practicality perspective, adhesive mounting pad has an advantage if we want to repeat the measurement. Also, by using adhesive mounting pad, we avoid direct contact of adhesive to the accelerometer so that it will not need cleaning.

  1. Magnet: For metal surfaces, one of the options that is easy and does not leave stain is by using magnetic mounting base on the accelerometer so that we can attach the accelerometer to metal. This is the reason magnetic base is one of the best options especially for short-term and temporary measurement on metal.

However, this mounting technique produces lower resonant frequency compared to the other two options that we have discussed above. If the frequency that we want to measure is high enough, say above 1 kHz, this mounting technique might influence the measurement results.

  1. Handheld: In some of the cases, the three options above are not possible to be chosen, and it leaves us with the last option which is holding the accelerometer by hand. In this kind of cases, a probe tip can be used so that we can put pressure by hand on the surface that we are measuring easier.

We will have to pay more attention to the frequency range that we are measuring if this mounting technique is used. Because this option will reduce our frequency range significantly, generally only in the range of 10 – 100 Hz.