Categories
Asia Noise News Southeast Asia Noise Nuisance Case Law

Why this Thai case matters for noise nuisance disputes in Southeast Asia

In 2024, the Supreme Administrative Court of Thailand issued decision A.58/2567 in a dispute between a tofu factory and local authorities. The case looks simple on the surface – neighbours complained about night-time noise from factory operations – but the judgment sends a strong message to regulators and operators across Southeast Asia: noise nuisance orders must be backed by defensible technical evidence, not just assumptions or feelings.

For Geonoise Asia, this is exactly the type of case where independent acoustic expertise, correct measurements and robust documentation make the difference between a legally sustainable order and one that will be struck down on appeal.

Case background: complaints about tofu factory noise

Residents in an urban neighbourhood complained that a tofu factory was operating at night using machinery and activities that allegedly generated disturbing noise – from production equipment and cleaning to handling water, moving carts and talking. Local officials treated the factory as a potential “health-hazardous business” under Thailand’s Public Health Act B.E. 2535 (1992) and opened an investigation.

Health officers attempted to take sound measurements at the complainant’s house. The resident did not allow instruments to be placed inside the dwelling, so the team installed a meter outside the house for three days. During that period, the tofu production did not run at night and no decisive evidence of excessive noise was captured. Authorities therefore had no measured data showing that noise levels breached any statutory limit.

Despite this, the district director – acting as the local public health authority – issued a formal nuisance abatement order under Section 28 of the Public Health Act. The order instructed the factory owner to “correct and improve” operations and to avoid any actions that would cause noise disturbance at night.

The factory appealed to the Minister of Public Health but received no effective response, and ultimately brought the matter before the Administrative Court, asking for the abatement order to be revoked. The first-instance Administrative Court dismissed the claim and upheld the order, so the operator appealed to the Supreme Administrative Court.

What the Supreme Administrative Court decided

At the heart of the case was a very practical question: can a nuisance order be based on assumptions that noise is “likely” to exceed legal limits, without any compliant measurement?

The Court examined the relevant Thai technical standards, in particular:

  • The National Environmental Board (NEB) notification on environmental noise limits, which treats noise as a nuisance when the level exceeds background noise by more than 10 dB(A).
  • The Department of Health notification on nuisance criteria for noise, which aligns with the same 10 dB(A) concept and requires methodical measurement.

The Court noted that the district office had never actually measured and calculated whether the factory’s noise exceeded background by more than 10 dB(A) during real operating conditions. The only documented conclusion was that if night-time production took place, it “might” disturb nearby residents. There was no quantitative proof, no properly documented measurement session at the relevant times, and no calculation showing a breach of the 10 dB(A) threshold.

On that basis, the Supreme Administrative Court held that:

  • A local authority may have power to issue nuisance abatement orders, but that power must be exercised on the basis of reliable technical evidence, not only on subjective impressions or speculative assessments.
  • Because no compliant sound measurements were carried out, the authority had not demonstrated that the legal criteria for “noise nuisance” were met.
  • The abatement order was therefore unlawful and had to be revoked.

In simple terms: even if neighbours sincerely feel disturbed, the law requires that a noise nuisance be proven using accepted measurement methods and thresholds; “it probably exceeds the standard” is not enough.

Key legal and technical principles from this case

  • Scientific evidence is mandatory. For noise nuisance, authorities must rely on correctly executed sound measurements – including equipment, locations, time periods and reference standards – not purely on complaints or officers’ subjective impressions.
  • The 10 dB(A) rule matters. In Thailand, environmental and public health regulations treat noise as a nuisance when it exceeds background noise by more than 10 dB(A). Without that differential being established, enforcement is on shaky ground.
  • Procedural errors can invalidate orders. If an authority issues a closure or abatement order without going through the legally required measurement and documentation steps, affected operators can challenge the order in court and obtain its cancellation.
  • Courts expect professional practice. Environmental and neighbour-noise cases must be built on strong factual and technical foundations, not assumptions.

Implications for regulators, operators and communities in Southeast Asia

For regulators and local authorities

  • Do not issue noise nuisance orders without a traceable measurement campaign aligned with your national standards.
  • Document sound level meter type, calibration, locations, measurement periods, background levels and calculations.
  • Consider partnering with independent acoustic consultants where internal expertise or equipment is limited.

For factories, venues and hospitality operators

  • Proactively commission baseline noise surveys around your facility, especially for night-time operations.
  • Maintain a measurement record to show regulators and courts that your operations comply with limits, or that you have a mitigation plan in place.
  • If you receive a nuisance order, check whether it is supported by proper measurements; if not, you may have legal arguments based on this precedent.

For residents and communities

  • Complaints are still important – they trigger investigations – but attaching recordings and indicative sound level readings will increase their weight.
  • Court cases are more likely to succeed when community testimony is supported by objective measurements from recognised methods and instruments.

How Geonoise Asia can support as expert witness and technical partner

This case is a textbook example of why independent acoustics expertise is critical in noise disputes:

  • Authorities need coherent, standards-based measurements to sustain their orders.
  • Operators need robust counter-evidence to challenge orders that are not properly substantiated.

Geonoise Asia can support public and private stakeholders throughout Southeast Asia by:

  • Designing and executing noise measurement campaigns that follow national and international standards.
  • Preparing clear, court-ready reports that explain methodology, uncertainty and compliance in language judges and lawyers can work with.
  • Acting as independent expert witnesses in administrative and civil proceedings where noise levels, nuisance and mitigation measures are in dispute.
  • Helping regulators and municipalities build internal procedures for defensible measurements and documentation.

For local authorities, that reduces litigation risk and increases public trust. For operators, it ensures that your side of the story is backed by credible data. For communities, it means noise complaints are treated seriously and resolved on the basis of facts, not just emotion.

Checklist: building a defensible noise nuisance case

Whether you are a regulator, operator or community representative in any Southeast Asian country, this Thai judgment suggests a simple checklist:

  • Define the relevant legal standard (for example, 10 dB(A) above background, night-time limits, zoning rules).
  • Plan the measurement (locations, time windows, instrumentation, calibration, background measurements).
  • Record and store raw data and logs – not just summary numbers.
  • Analyse and report with traceability so that another expert can independently review your findings.
  • Engage independent acoustics experts early when you expect the dispute may escalate to court.

Geonoise Asia is ready to support stakeholders across Thailand, Malaysia, Indonesia, Vietnam, Singapore and the wider region who need evidence-based, defensible solutions to noise nuisance disputes – from early complaint investigations all the way to expert testimony in court.

Categories
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

Written by:

Hizkia Natanael
Acoustic Engineer
Phone: +6221 5010 5025
Email: hizkia@geonoise.asia

Categories
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

Categories
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

Categories
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

Categories
Asia Noise News Building Accoustics Environment Industrial

Noise Level Prediction in Industry (Oil & Gas, Power Generation, Process, etc.)

Most industrial activities create noise that can be harmful to the environment as well as to their workers. To minimize this effect, governments, associations, and companies have created regulations, standards, and codes to set the allowable noise both inside the sites, that can be harmful to the workers, as well as to the environment. In a lot of cases, during the planning phase, the plant owner and project management want to be sure that the noise levels are acceptable. Since the plant is not built yet, what can be done is creating a noise model to simulate the plant, so that the noise levels can be predicted. In this article, we will explore how we can do so.

The first thing we must know is how much noise does the noise sources inside of the plant will emit. The noise source is usually described in two ways which is Sound Power Level (Lw or SWL), and Sound Pressure Level (Lp or SPL) in certain distance, most commonly Lp in 1 m distance. There are multiple ways to get this information for certain noise sources. First, if the equipment type and model have been chosen, the equipment manufacturer will normally report the noise level in their datasheet. However, this is not usually the case with most of noise predictions since the noise study is normally done before the equipment suppliers are appointed. So, the second way to be able to predict the noise emission is by following empirical formulas that are developed by researchers. You can find such formulas in some textbooks, journals, and papers. For rotating parts, you will need its rated power and rotational speed to be able to estimate the noise emission. 

For example, in the speed range of 3000-3600 rpm, the noise level of a pump with drive motor power above 75 kW can be predicted using the following equation:

Suppose a pump with rotational speed of 3000 rpm and 100 kW, according to the formula, it can be estimated that the noise level at 1 m from the pump would be 92 dB. And suppose the noise source can be considered as point source on the ground (hemisphere propagation), the sound power level of the pump can be calculated using the following formula:

Where r is the distance from source to receiver

And in this case, the predicted Lw would be 100 dB.

Thirds, noise measurement to a similar equipment can also be an option to be able to determine the noise level of the new equipment. Another option, in some countries, there are noise emission limit for certain equipment, you can use that limit if it is applicable for your project.

After the Lw of all noise sources is obtained, we want to calculate the noise levels (the Lp) at the receivers. There are some standards which procedure can be followed to calculate this. Few of which are ISO 9613-2, NORD 2000, CNOSSOS EU, and many others. Most of the standards consider some factors to the calculation such as distance, atmospheric absorption, ground reflection, screening effect (from barriers and obstacles) and other factors such as volume absorption from vegetation, industrial site, etc. Most consultants and projects will require a software such as SoundPLAN to do this calculation.

Depending the project, there are few types of noise limit which compliance will need to be ensured. The most common ones are environmental noise limit, noise exposure limit, area noise limit and absolute noise limit. Besides, the noise level during emergency is also modelled so that the information can be used for safety and PAGA (Public Address and General Alarm) study.

Environmental noise limit is usually calculated for the plant’s contribution to the plant’s boundary as well as to the nearest sensitive receiver such as residential and school near the plant. How this is accessed depends on the regulation applicable on the plant area. In Indonesia for example, the noise limit for residential area is Lsm 55 dBA and industrial area is Lsm 70 dBA. Lsm is a measure like Ldn, but the night noise level addition is 5 dB instead of the 10 dB addition that most other countries, especially Europeans use. To ensure compliance with this regulation, the noise level at fence should be less than Lsm 70 dBA, and suppose there is a residential area nearby, the contribution from the site should be less than 55 dBA. It is also advisable to measure the existing noise level at the sensitive receivers to make the study more relevant to the situation. 

Noise exposure limit is the maximum exposure to noise that the workers get during their working period. In Indonesia, the noise exposure limit is 85 dBA for 8 working hours. To change the working hours, 3 dB exchange rate is used. For example, if the noise level in the plant is 88 dBA, then the workers can only work there for 4 hours, if it is 91 dBA, then the time limit is 2 hours, and so on. To extend the working hours on a noisy area, the options are to actually reduce the noise level by reducing the noise emission from the source or noise control at transmission (for example using barrier), or by usage of Hearing Protection Device (HPD) for the workers such as ear plugs and ear muffs. The noise exposure of workers after usage of HPD can be calculated using the following formula:

Where NRR is the noise reduction rating of the HPD in dB.

Different area might have different noise level limits, and therefore area noise limits are useful. For example, in an unmanned mechanical room, the noise level can be high, for instance 110 dBA. However, inside of the site office, the allowable noise level is much lower, for example 50 dBA. This noise level shall be calculated to ensure compliance with the noise limit. Different companies might have different limits for this to ensure their employees’ health and productivity. If the area is indoor and the noise source is outdoor, then the interior noise level can be estimated using standards such as ISO 12354-3. 

The absolute noise limit is the highest noise level allowable at the plant, and shall not be exceeded at any times, including emergency. In most cases, the absolute noise limit for impulsive sound is 140 dBA. To ensure compliance with this requirement, potential high-level noise shall be calculated, for example safety valves.

During emergency, different noise sources than normal situation will be activated, such as flare, blowdown valves, fire pumps, and other equipment. In such cases, the sound from the alarm and Public Address system must be able to be heard by the workers inside of the plant. Normally the target for the SPL from the PAGA system should be higher than 10 dB above the noise level. Therefore, the noise level during emergency in each area should be well-known. 

USAThailandMalaysiaIndiaIndonesiaVietnamPhilippines