Categories
Asia Noise News Building Accoustics Building Acoustics Environment Home Noise and Vibration Product News Noise-th Uncategorized Vibration Virtual Data Room

What you need to know about Room Acoustics

In the Southeast Asia region especially, acoustic properties of residential buildings are often neglected by designers, developers, contractors, and even home buyers. Noises from both internal and external environments affects occupants’ daily lives, causing nuisance which can strongly deteriorate one’s living quality as a long-term effect. In this article, we will investigate building/room acoustics, and the actions that can be undertaken to improve the acoustical environment inside a building.

Room acoustics

In general, the acoustics of rooms can be divided into two groups: low frequency and high frequency. Sound in rooms can be highly affected by the reflective properties of the surfaces in the room. This is because multiple reflections may occur if the room surfaces are highly reflective, which then leads to a reverberant field in addition to the direct field from the source especially at higher frequency range. Therefore, at any point in the room, the overall sound pressure level is influenced by the energy contained in both the direct and reverberant fields (Crocker, 2007).

Sound transmissions in buildings

Sound can be transmitted within a building by transmitting through air in the spaces bounded by walls or roofs/ceilings, known as airborne transmission. Another way would be through structural transmission through the structural assemblies of the building, or impacts.

Airborne sound originates from a source that radiates sound waves into the air, which would then impinge on the building surfaces. A good example of airborne sound will be speech, or music from a television or loudspeaker. On the other hand, impact sound is being generated when an object strikes the surface of a building. The commonly heard impact sounds that we can hear in buildings are footsteps, furniture-dragging sounds, cleaning, and other equipment that is used directly on the floor surfaces. To overcome these noises, good sound isolation should be considered for all the possible paths for sound and the junctions between walls and floors, not just at the direct path through common wall or floor.

Sound insulation – airborne and impact

It is imperative to consider the control of airborne and impact sound transmission through the building elements like walls, ceilings, or floors, as stated above. In this case, sound insulation methods will be crucial. Different methods can be implemented for airborne, impact and flanking sounds (Crocker, 2007).

For airborne sound, insulation can be applied at any building element. This is because when sound hits on a surface, a very small fraction of the incident energy will be radiated from the other side. The sound transmission loss (TL), which is the ratio of the incident sound energy relative to the transmitted sound energy is typically measured. TL can be expressed in decibels (dB), and it is sometimes known as sound reduction index (R) in European and ISO standards. The elements to be used in buildings for sound insulation are measured in accordance with standards, where the commonly seen method would be the two-room method. A test specimen would be mounted between a reverberant source room, and a receiver room such that the only significant path for sound to transmit through is the specimen, and other possible transmission paths would be suppressed. As such, it will be useful to determine the TL of the building elements/materials so that one can estimate the airborne sound insulation performance inside the building space.

As for impact sound which typically radiates from a floor into rooms below or horizontally, insulation can be done via floor coverings or floor slabs. This is because the applications of these items can reduce the impact sound pressure levels that travels into the receiver room. The typical methods of insulation are adding soft floor coverings on concrete slab, increasing the thickness of concrete floors, or implementing floating floors.

Single number ratings

To know the acoustic information of an insulation element, the standard method would be to refer to the single number ratings of that element. These ratings would be assigned to building materials based on their sound transmission spectra by the means of reference curves or weighted summation procedures.

The most used single-number rating for airborne sound insulation is the Sound Transmission Class (STC), which is in accordance with the American Society for Testing and Materials (ASTM) E413. There is another equivalent number called the Weighted Sound Reduction Index (Rw), which is based on the International Organization for Standardization (ISO) standard ISO 717.

The figure above shows an example of STC contour fitted to a concrete slab’s data. The differences between data points below the contour line and the value of contour are called the “deficiencies”. According to ASTM E413, the sum of deficiency should not be greater than 32 dB, and each individual deficiency should not exceed 8 dB (also known as the 8-dB rule). The reference contour for ASTM covers the frequency range from 125 Hz to 4000 Hz. The Rw contour from the ISO 717 has the same shape, except that it covers a broader frequency range of 100 Hz to 3150 Hz. Also, there is no 8-dB rule in ISO 717. Comparing both standards, the numbers from both ratings are usually close. However, the weighted summation method developed in ISO 717 accounts for the higher importance of low frequencies in traffic noise and modern music systems. As such, this method allows corrections/spectrum adaptation terms to be produced that can be used in conjunction with the Rw rating.

As for impact sound insulation, the sound pressure levels are often collected using a standard tapping machine and normalised, which will then be used with a reference curve to calculate its rating, typically the Impact Insulation Class (IIC), or the weighted index Ln,w. In fact, these ratings are commonly used in building codes. Again, the rating curves are identical in each standard, but there are some differences among them still. For instance, the ASTM IIC method does not allow any unfavourable deviation to exceed 8 dB. An increasing IIC rating would indicate that the impact sound insulation improves. Conversely, the Ln,w rating would decrease as the impact sound insulation gets better. We can take the relationship between both ratings as follow (assuming that the 8-dB rule is not invoked):

However, there is debate regarding the usefulness of ISO tapping machine data obtained on different types of floors. Therefore, the latest version of ISO 717-2 proposed the use of C1, a spectrum adaptation term to consider low-frequency noise that is normally generated below a lightweight joist floor.  is the unweighted sum of energy in the one-third octave bands (50 or 100 Hz – 2500 Hz) minus 15 dB. According to the standard, this rating is expected to have a better correlation with the subjective evaluation of noise coming below floors, especially for low frequency ones.

The single rating numbers mentioned above are all useful when it comes to determining the level of acoustic insulation a material can provide. With the explanation above about room acoustics and the insulation measures that can be implemented, it will give a better idea on how one should tackle and handle the room acoustics in a building.

References

Crocker, M. J. (2007). Chapter 103: Room Acoustics. In C. H. Hansen, & M. J. Crocker (Ed.), Handbook of Noise and Vibration Control (pp. 1240-1246). Adelaide, South Australia, Australia: John Wiley & Sons, Inc. doi:ISBN 978-0-471-39599-7

Crocker, M. J. (2007). Chapter 105: Sound Insulation—Airborne and Impact. In A. C. Warnock, & M. J. Crocker (Ed.), Handbook of Noise and Vibration Control (pp. 1257-1266). Ottawa, Ontario, Canada: John Wiley & Sons, Inc. doi:ISBN 978-0-471-39599-7

Categories
Asia Noise News Building Accoustics Building Acoustics Environment Home Industrial Noise and Vibration Product News Noise-th Vibration Virtual Data Room

Acoustic of Small Studio

Small studios are now widely used in the recording industry due to their high feasibility and them being economically friendly, which allows those working in the recording/music industry to be able to work remotely without needing to travel to big studios that much. With a good implementation of acoustic treatments, music recorded in small studios can still be high in sound quality, sometimes even suitable for commercial release.

So, what makes a recording studio good?

In today’s article, we will look into the acoustics of small recording studios, where music is performed as recorded (Everest & Pohlmann, 2015).

Ambient conditions

A quiet environment is a must for a studio to be useful, which is sometimes quite hard to achieve. First, noisy sites should definitely be avoided as many noise and vibration problems will not arise by just choosing a site in a quiet location for your studio. Avoid places near loud areas like train tracks, busy road intersections, or even an airport. The ultimate idea is to reduce the external noise spectrum, then keep the background noise within the criteria goal by implementing sound insulations in the building. However, the construction costs of effective insulation elements like floating floors or special acoustically treated walls/windows/doors may cost greatly. Hence, the best way, that is more cost-effective, will be to choose a quiet site in the first place, rather than isolating a studio located at a noisy place.

The HVAC system, which includes heating, ventilating and air-conditioning systems should be designed such that the acoustics meet the required noise criteria goals. The noise and vibration coming from motors, fans ducts diffusers etc. should be brought to the minimum so that low ambient noise levels can be achieved.

Noise

Similar to any other quiet rooms, a small studio needs to comply with the acoustical isolation rules and standards. It is important to construct the building elements with high transmission loss and decoupled from external noise and vibration sources to ensure that the ambient noise levels are low enough for good recording quality. Not only that, but these constructions will also act as an isolation that prevents loud noise (music) levels in the studio from affecting the neighbouring spaces.

Studio acoustical characteristics

Inside a studio, the types of sound present, and may be picked up by microphones, are the direct and indirect sounds. Direct sound is basically the sound coming from the source (before it hits a surface). Indirect sound follows right after the direct, caused by various non-free field effects characteristic of an enclosed area. In short, everything that is not direct sound is considered as indirect or reflected sound.

It is known that the sound pressure level in an enclosed space will vary according to the distance from a source, while also being affected by the absorbency of the room or space. If all the surfaces in a room are fully reflective, it means that the room is fully reverberant (like a reverberation chamber), therefore the sound pressure level would be the same (as of the sound from the source) everywhere in the room as no sound energy is absorbed. It can also be assumed that there is relatively no direct sound since most of the sounds are reflected, hence indirect. Another component that causes indirect sound comes from the resonances in a room, which is also the result of reflected sound.

Indirect sound also depends on the materials used for room construction (e.g., doors, walls, windows, floors, ceiling etc). These elements can also experience the excitation by the vibration of sound from the source, hence able to decay at their own rate when the excitation is removed.

Reverberation Time

The composite effect of all the indirect sound types is reverberation. Many would say that reverberation time is an indicator of a room’s acoustical quality, but in reality, measuring reverberation time does not directly reveal the nature of the reverberation individual components, giving a small weakness of reverberation time being the indicator. Therefore, reverberation time is often not the only indicator of acoustical conditions.

Reverberation time is, by definition, the measure of decay rate, and is usually known as T60. For example, a T60 of 1 second represents that a decay of 60 dB takes 1 second to finish. Some may say that it is inaccurate to apply the reverberation time concept to small rooms, as a genuine reverberant field may not exist in small spaces. However, it is still practical to utilize the Sabine equation (for reverberation) in small-room design to make estimations on the absorption requirements at different frequencies, provided that limitations of the process are taken into account during the estimation.

It is not good to have it being too long or too short. This is because for a room with reverberation time that is too long, speech syllables and music phrases will be masked hence causing a worsening speech intelligibility and music quality. Conversely, if the reverberation time is too short, speech and music will lose character therefore suffer in quality, whereby music will typically suffer even more. Despite that, there is no specific optimal value for reverberation time that can be applied for any rooms, because too many factors are also involved besides reverberation. Things like the types of sound sources (female/male voice, speed of speech, types of language etc) will all affect the room’s acoustic outcome. However, for practical reasons, there are approximations available for acousticians to refer to, where certain amount of compromise has been implemented to make it usable in many types of recording applications.

Diffusion
A high diffusion room give a feeling of spaciousness due to the spatial multiplicity of room reflections, and it is also a good solution to control resonances effects. To create a significant diffusing effect, the implementation of splaying walls and geometrical protuberances works well. Another way will be to distribute absorbing materials in the room, which also increases the absorbing efficiency of the room apart from diffusion. Typically, modular diffraction grating diffusing elements (e.g. 2- x 4-ft units) can provide diffusion and broadband absorption, and can be easily installed in small studios. Still, there will not be much diffusion in a studio room, in practice.


Examples of acoustic treatment
So, what are the acoustic treatment elements that you can use to improve your studio? These items below can be considered (Studio, 2021):
1. Bass Traps
This is one of the most important tools to have in a studio. Bass traps are normally used to absorb low frequencies, also known as bass frequencies, but in fact they are actually broadband absorbers. This means that they are also good at absorbing mid to high frequencies too.

2. Acoustic Panels
Acoustic panels work similarly like bass traps, but rather ineffective at absorbing the bass frequencies. One thing good about acoustic panels as compared to bass traps is that since they are much thinner, they offer more surface area with less material. Therefore, acoustic panels are capable of providing larger wall coverage with less cost as compared to bass traps.

3. Diffusers
Diffusers may not be as effective as compared to bass traps and acoustic panels if used in small studios. So, this really depends on users, whether they find diffusers useful for their application.
Now, where should the acoustic treatment products be placed at?
There are three key areas of the room to be defined in this case:
– Trihedral corners
– Dihedral corners
– Walls
The priority for coverage goes from trihedral corners, dihedral corners to the walls. This is because acoustic treatments should ideally be placed at areas which have the greatest impact. At trihedral corners, for example, three sets of parallel walls converge, hence if there is absorption material located here, it catches the room modes from all three dimensions, giving three times the initial effectiveness. Same concept goes for dihedral corners and walls, but with two dimensions and one dimension respectively.

 

References
Everest, F. A., & Pohlmann, K. C. (2015). Acoustics of Small Recording Studios. In F. A. Everest, & K. C. Pohlmann, Master Handbook of Acoustics (6th Edition ed.). McGraw-Hill Education – Access Engineering. doi:ISBN: 9780071841047
Studio, E.-H. R. (2021). CHAPTER 3: The Ultimate Guide to Acoustic Treatment for Home Studios. Retrieved from E-Home Recording Studio: https://ehomerecordingstudio.com/acoustic-treatment-101/

Categories
Asia Noise News Building Accoustics Building Acoustics Environment Home Industrial Noise and Vibration Product News Noise-th Uncategorized Vibration Virtual Data Room

SCOPE OF ARCHITECTURAL ACOUSTIC CONSULTANT’S WORK

What should an architectural acoustic consulting firm do? This question is very commonly asked when an acoustician is asked to submit a work proposal for a project. In this article, we will describe the scope of work of an acoustic consultant with reference to the type of mixed-use high-end building project. Because in this type of project an architectural acoustic consultant is required to be able to describe all the scope of work in one project with high complexity.

Details of the scope of work of acoustic consultants in mixed-use high-end building projects are as follows:

1. Criteria Formulation
At the beginning of the project, the acoustic consultant must recommend design criteria/targets for various rooms and areas within the building such as retail, apartment units both for bedrooms and living rooms, and commercial areas such as meeting rooms, multifunction rooms, spas, fitness, restaurants. , club lounges, etc. These criteria are determined based on studies and summaries of the applicable standards in the country, international standards, client recommendations, and the building operator concerned.

2. Schematic
With so many rooms that fall into the scope of work of an acoustic consultant with this type of project, it is highly recommended that an acoustician provide schematic designs for several important rooms for the attention of other consultants in the early stages of the project. Examples are MEP rooms, building structure connections, placement of HVAC equipment above the ceiling, and draft wall partition configurations.

3. Noise Review from the Environment Around the Building
The acoustic consultant must review potential sources of noise from aircraft, train stations, transportation on highways, outdoor MEP equipment, and all things around the building that have the potential to interfere with audial comfort to the interior of the building to ensure the targeted acoustic criteria are achieved. At this stage the acoustician must be able to convey the results of modeling and simulations for several points around the building in the form of drawings that can be understood by clients and other consultants. At this stage, a building fa konfigurasiade configuration can be recommended that takes into account the noise from the area around the building.

4. Noise HVAC (duct-borne)
Discussion and review of noise from all HVAC be it from air handling unit (AHU), axial and centrifugal fans, fan coil unit (FCU), etc. The ducting system will be analyzed to determine the noise level in the critical room from the nearest diffuser ducting system outlet. From this analysis, the need for silencers, lagging or duct linings will be recommended in order to achieve the acoustic criteria that have been determined. The analysis will be carried out on all HVAC systems without exception, with the greatest attention being on residential areas, spas, hotels, etc.

5. Sound Propagation in Building Structures (Structure-Borne)
All matters relating to the propagation or vibration of sound via the building structure, whether it is due to human footsteps on the top floor or vibrations from the installation of MEP machines above the ceiling or floor. The acoustic consultant must be able to evaluate according to the natural frequency of the building structure and provide recommendations on floor slab elements to meet operator and client standards applied.

6. Machine Vibration Control
The acoustic consultant should conduct an in-depth discussion on the vibration isolator for the installed machines. This is done by taking into account the deflection of the floor slab and its relationship to the static and dynamic loads of the machine (eg chiller, pump, cooling tower, AHU, etc.). In addition, ensuring the insulator is efficient to withstand vibrations to the building structure.

7. Room Insulation
Discussion on the isolation of certain rooms by providing technical calculations both with the “indoor room” and “floating floor” methods so that sound and vibration do not propagate to all elements of the building, especially the room around the isolated area.

8. Acoustic Interior
Reviewing and calculating room acoustic parameters on interior design elements of commercial spaces such as ballrooms, meeting rooms, and other areas where the clarity of speech or music is crucial.

9. Detailed Drawing
The acoustic consultant must provide or recommend specifications for building skin elements such as faades, walls and floor slabs in CAD format on a cut or plan basis. This will make it easier for relevant consultants to apply these specifications in their construction drawings.

10. Noise Isolation Due to Impact
Collisions in the fitness area, whether it’s due to aerobic activity or lifting weights, are a special concern for acoustic consultants. In addition to different forms of acoustic treatment, the time span of these activities must also be included in detailed technical calculations, and of course measurable.

11. Review of Related Consultant Drawings
After all acoustic treatments have been adapted to construction drawings by the relevant consultant, the acoustician must review all these drawings to ensure that all treatments have been described correctly, before entering the tender phase.

12. Coordination with Selected Contractors
The acoustic consultant must allocate time to coordinate the design and answer questions from the selected contractor and sign all forms related to material approval if it is in accordance with the acoustic intentions.

13. Final assessment
Before handing over the project to the next party, the acoustic consultant must conduct a final assessment of the building elements designed by the consultant. Next, compare the measured value to the design target and pre-determined criteria.

by Ramadhan Akmal Putra 

Categories
Asia Noise News Building Accoustics Building Acoustics Environment Home Noise and Vibration Product News Uncategorized Vibration

Acoustic Treatment in Schools

Several generations of students and teachers have battled the inherent problems caused by noise and poor acoustic design in educational settings. Despite the problem having been recognized for over 100 years, acoustics in classrooms remain under-addressed in older buildings and many newer built schools. A 2012 released study “Essex Study-Optimal classroom acoustics for all” defines the need and benefits of acoustically treating classrooms. The study looked at the impact of reducing reverberation time in a working classroom environment. The conclusion drawn after several measurements of acoustics and surveys with participants was a demonstrable clear benefit to all by improving the acoustic environment. Simply, uncontrolled reverberations in a classroom have a direct negative effect on health and performance, for both students and teachers.

Reverberation is the echo of sound reflecting from hard surface to hard surface causing noise to build up and creating a confusing, unintelligible mass of sound. The hard surfaces such as windows, blackboards, concrete blocks and gypsum walls found in most classrooms do not absorb sound energy and as a result, the sound reflects back into the room, arriving at the ear many times at intervals that are milliseconds apart. This creates a sound that is smeared and the brain has difficulty distinguishing the primary information and disseminating it from the reverberation. This problem is exacerbated when hearing assist devices and cochlear implants are used. Excess reverberation also affects students with auditory processing issues, ADHD, and other learning challenges. In fact, all students benefit from lowering the reverberation and improving intelligibility.

Reverberation is measured in relation to time. The measurement (RT60) is the time it takes for sound to decay by 60dB in a particular space. The greater the reverberation time, the more “echo” in a room, and the greater the listening challenges become. The reverberation time of a room will depend on variables such as the size of the classroom, the reflective surfaces, and how other absorbent or reflective features in the room may increase the effect.


The Effect on Students and Teachers
Most learning occurs from the verbal communication of information and ideas. Traditionally, classrooms have not been designed with attention to how the room sounds or how it may affect the students and teachers that are using it. It is well known that proximity to the teacher increases student engagement and the comprehension of the material being taught. As most classes have 30 or more students in it, it is impossible for every student to be close to the teacher. For students at the rear of the class, the volume level reaching the students will be reduced by as much as 20dB compared to when it is created. The brain then has to differentiate whether the sound being received is the source material or the sound bouncing off the walls. When one factors in the natural reverberation in the room, the delay in sound reaching the ear, along with distractions such as HVAC noise, the classroom base-level sound and noise seeping in from outside the doors and windows, it is not surprising to find that many children are simply not hearing the material they are being taught.
And this is only the beginning. As the ambient sound level in the classroom increases, the teacher naturally increases his or her voice level. The ‘classroom chatter’ naturally increases to compensate and the problem exacerbates to the point where the teacher and students begin to lose concentration.

Children do not Listen Like Adults
When you consider the acoustic problems described, studies suggest that as many as 30% of students may actually be challenged in understanding their teacher’s message. Poor intelligibility due to proximity to the teacher, excessive reverberation and noise result in a lack of comprehension of the material being taught.
Most adults would not notice these challenges as life experience allows us to “fill in the missing words”.

The solution is to acoustically treat the classroom
Right from the early days of radio, broadcasters came to the conclusion that unless the source broadcast was clear and concise, the message would get lost. To address the problem, absorptive acoustic panels were mounted on the broadcast studio wall surfaces to suppress the reflections and improve intelligibility for the listener. This practice continues to this day and the same rules apply whether you are teaching in a classroom, delivering a message in a house of worship or broadcasting a distance learning class over the internet.

A popular solution is to suspend the panels from the ceiling. The added benefit of the airspace created behind the panel when suspended increases the panel’s absorptive surface area. This is particularly effective in noisy cafeterias. For classrooms with T-bar ceilings, there are acoustic tiles that can replace the original non-absorptive compressed fiber tile. Actual panel placement is not as critical as one may think. It is more about using available space to your best advantage by evenly distributing the panels around the room.
A classroom free from excessive reverberation and noise is far more conducive to learning and greatly contributes to better student success – whether the student has learning issues or not. Reducing the ambient sound level also makes it easier to teach, reduces teacher stress and burnout, and significantly reduces listening fatigue for everyone. When you consider the teacher – student benefits and the relatively low cost involved installing acoustic treatment, a practical solution for school districts and post secondary institutions that care about attaining the maximum results from their student body is readily available.

Credit : James Wright, Business development executive at Primacoustic

Categories
Building Accoustics

Researchers Develop ‘Acoustic Metamaterial’

Boston University researchers, Xin Zhang, a professor at the College of Engineering, and Reza Ghaffarivardavagh, a Ph.D. student in the Department of Mechanical Engineering, released a paper in Physical Review B demonstrating it’s possible to silence noise using an open, ring-like structure, created to mathematically perfect specifications, for cutting out sounds while maintaining airflow.

They calculated the dimensions and specifications that the metamaterial would need to have in order to interfere with the transmitted sound waves, preventing sound—but not air—from being radiated through the open structure. The basic premise is that the metamaterial needs to be shaped in such a way that it sends incoming sounds back to where they came from, they say.

As a test case, they decided to create a structure that could silence sound from a loudspeaker. Based on their calculations, they modeled the physical dimensions that would most effectively silence noises. Bringing those models to life, they used 3-D printing to materialize an open, noise-canceling structure made of plastic.

Trying it out in the lab, the researchers sealed the loudspeaker into one end of a PVC pipe. On the other end, the tailor-made acoustic metamaterial was fastened into the opening. With the hit of the play button, the experimental loudspeaker set-up came oh-so-quietly to life in the lab. Standing in the room, based on your sense of hearing alone, you’d never know that the loudspeaker was blasting an irritatingly high-pitched note. If, however, you peered into the PVC pipe, you would see the loudspeaker’s subwoofers thrumming away.

The metamaterial, ringing around the internal perimeter of the pipe’s mouth, worked like a mute button incarnate until the moment when Ghaffarivardavagh reached down and pulled it free. The lab suddenly echoed with the screeching of the loudspeaker’s tune.

How acoustic metamaterial works – Geonoise Asia
How acoustic metamaterial works – Geonoise Asia

Now that their prototype has proved so effective, the researchers have some big ideas about how their acoustic-silencing metamaterial could go to work making the real world quieter.

Closer to home—or the office—fans and HVAC systems could benefit from acoustic metamaterials that render them silent yet still enable hot or cold air to be circulated unencumbered throughout a building.

Ghaffarivardavagh and Zhang also point to the unsightliness of the sound barriers used today to reduce noise pollution from traffic and see room for an aesthetic upgrade. “Our structure is super lightweight, open, and beautiful. Each piece could be used as a tile or brick to scale up and build a sound-canceling, permeable wall,” they say.

The shape of acoustic-silencing metamaterials, based on their method, is also completely customizable, Ghaffarivardavagh says. The outer part doesn’t need to be a round ring shape in order to function.

“We can design the outer shape as a cube or hexagon, anything really,” he says. “When we want to create a wall, we will go to a hexagonal shape” that can fit together like an open-air honeycomb structure.

Such walls could help contain many types of noises. Even those from the intense vibrations of an MRI machine, Zhang says.

According to Stephan Anderson, a professor of radiology at BU School of Medicine and a coauthor of the study, the acoustic metamaterial could potentially be scaled “to fit inside the central bore of an MRI machine,” shielding patients from the sound during the imaging process.

Zhang says the possibilities are endless, since the noise mitigation method can be customized to suit nearly any environment: “The idea is that we can now mathematically design an object that can block the sounds of anything”.

Source:

https://phys.org/news/2019-03-acoustic-metamaterial-cancels.html